Couple stress-based unsymmetric 8-node planar membrane elements with good tolerances to mesh distortion

Author:

Shang YanORCID,Wu HuanpuORCID

Abstract

PurposeThe paper aims to propose two new 8-node quadrilateral membrane elements with good distortion tolerance for the modified couple stress elasticity based on the unsymmetric finite element method (FEM).Design/methodology/approachThe nodal rotation degrees of freedom (DOFs) are introduced into the virtual work principle and constrained by the penalty function for approximating the test functions of the physical rotation and curvature. Therefore, only the C0 continuity instead of C1 continuity is required for the displacement during the element construction. The first unsymmetric element assumes the test functions of the displacement and strain using the standard 8-node isoparametric interpolations, while these test functions in the second model are further enhanced by the nodal rotation DOFs. Besides, the trial functions in these two elements are constructed based on the stress functions that can a priori satisfy related governing equations.FindingsThe benchmark tests show that both the two elements can efficiently simulate the size-dependent plane problems, exhibiting good numerical accuracies and high distortion tolerances. In particular, they can still exactly reproduce the constant couple stress state when the element shape deteriorates severely into the degenerated triangle. Moreover, it can also be observed that the second element model, in which the linked interpolation technique is used, has better performance than the first one, especially in capturing the steep gradients of the physical rotations.Originality/valueAs the proposed new elements use only three DOFs per node, they can be readily incorporated into the existing finite element (FE) programs. Thus, they are of great benefit to analysis of size-dependent membrane behaviors of micro/nano structures.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference40 articles.

1. 8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes;Computer Methods in Applied Mechanics and Engineering,2011

2. Shape-free finite element method: the plane hybrid stress-function (HS-F) element method for anisotropic materials;Science China Physics, Mechanics and Astronomy,2011

3. A shape‐free 8‐node plane element unsymmetric analytical trial function method;International Journal for Numerical Methods in Engineering,2012

4. Some advances in high-performance finite element methods;Engineering Computations,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3