Rendering optimal design under various uncertainties

Author:

Lü Hui,Yang Kun,Shangguan Wen-bin,Yin Hui,Yu DJ

Abstract

Purpose The purpose of this paper is to propose a unified optimization design method and apply it to handle the brake squeal instability involving various uncertainties in a unified framework. Design/methodology/approach Fuzzy random variables are taken as equivalent variables of conventional uncertain variables, and a unified response analysis method is first derived based on level-cut technique, Taylor expansion and central difference scheme. Next, a unified reliability analysis method is developed by integrating the unified response analysis and fuzzy possibility theory. Finally, based on the unified reliability analysis method, a unified reliability-based optimization model is established, which is capable of optimizing uncertain responses in a unified way for different uncertainty cases. Findings The proposed method is extended to perform squeal instability analysis and optimization involving various uncertainties. Numerical examples under eight uncertainty cases are provided and the results demonstrate the effectiveness of the proposed method. Originality/value Most of the existing methods of uncertainty analysis and optimization are merely effective in tackling one uncertainty case. The proposed method is able to handle the uncertain problems involving various types of uncertainties in a unified way.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study of the influence of heterogeneous friction coefficient and heterogeneous contact stiffness on the generation of squeal;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-08-16

2. Identification of Contact Stiffness between Brake Disc and Brake Pads Using Modal Frequency Analysis;Journal of Engineering and Technological Sciences;2020-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3