Modeling and simulation of sheets ply separation induced by air flow

Author:

He Xin,Li XiaoPing,Yang Jinrong

Abstract

Purpose The purpose of this paper is to investigate the mechanism of sheets ply separation induced by air flow through numerical simulation with two-way FSI (fluid-structure interaction) simulation using ANSYS and theoretical speculation. Design/methodology/approach The paper primarily establishes a simplified physical model of the sheets ply separation induced by air flow. Then, the force of the air flow acting on the sheet has been analyzed based on the model, and the main factor leading to separation was obtained. Furthermore, the parameter analysis was investigated based on linear stability analysis, from which the factors that affect stable separation are obtained. Finally, a series of numerical simulations are performed to verify the conclusions. Findings This study shows that the main separation factor is the variable air pressure in the gap between the sheets caused by the dynamic pressure air flow. Increasing the inlet velocity of the flow field will increase the separation distance but excessive velocity will lead to instability. The viscous resistance acting on the sheet and the bending stiffness of the sheet are factors that stabilize the system, and the sheet density and the restoring force can lead to instability. Originality/value The paper is one of the first in the literature that investigates the problem of sheets ply separation induced by air flow, which is the primary method for multi-layer separation in sheets de-stacking operations, especially for the high-speed occasion.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference49 articles.

1. Fluid-flow-induced flutter of a flag;Proceedings of the National Academy of Sciences of the United States of America,2005

2. Theory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flow;Journal of Fluids and Structures,2012

3. ANSYS workbench system coupling: a state-of-the-art computational framework for analyzing multiphysics problems;Engineering with Computers,2018

4. Flapping dynamics of a flag in a uniform stream;Journal of Fluid Mechanics,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3