Prediction and optimization model of activated carbon double layer capacitors based on improved heuristic approach genetic algorithm neural network

Author:

Yang Zhen,Lin Yun,Gu Xingsheng,Liang Xiaoyi

Abstract

Purpose The purpose of this paper is to study the electrochemical properties of electrode material on activated carbon double layer capacitors. It also tries to develop a prediction model to evaluate pore size value. Design/methodology/approach Back-propagation neural network (BPNN) prediction model is used to evaluate pore size value. Also, an improved heuristic approach genetic algorithm (HAGA) is used to search for the optimal relationship between process parameters and electrochemical properties. Findings A three-layer ANN is found to be optimum with the architecture of three and six neurons in the first and second hidden layer and one neuron in output layer. The simulation results show that the optimized design model based on HAGA can get the suitable process parameters. Originality/value HAGA BPNN is proved to be a practical and efficient way for acquiring information and providing optimal parameters about the activated carbon double layer capacitor electrode material.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3