Author:
Shi Kairong,Ruan Zhijian,Jiang Zhengrong,Lin Quanpan,Wang Long
Abstract
Purpose
The purpose of this paper is to propose a new hybrid algorithm, named improved plant growth simulation algorithm and genetic hybrid algorithm (PGSA-GA), for solving structural optimization problems.
Design/methodology/approach
PGSA-GA is based on PGSA and three improved strategies, namely, elitist strategy of morphactin concentration calculation, strategy of intelligent variable step size and strategy of initial growth point selection based on GA. After a detailed formulation and explanation of its implementation, PGSA-GA is verified using the examples of typical truss and single-layer lattice shell.
Findings
Improved PGSA-GA was implemented and optimization was carried out for two typical optimization problems; then, a comparison was made between the PGSA-GA and other methods. The results show that the method proposed in the paper has the advantages of high efficiency and rapid convergence, which enable it to be used for the optimization of various types of steel structures.
Originality/value
Through the examples of typical truss and single-layer lattice shell, it shows that the optimization efficiency and effect of PGSA-GA are better than those of other algorithms and methods, such as GA, secondary optimization method, etc. The results show that PGSA-GA is quite suitable for structural optimization.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献