Author:
Daher Ali,Ammar Amine,Hijazi Abbas
Abstract
Purpose
The purpose of this paper is to develop a numerical model for the simulation of the dynamics of nanoparticles (NPs) at liquid–liquid interfaces. Two cases have been studied, NPs smaller than the interfacial thickness, and NPs greater than the interfacial thickness.
Design/methodology/approach
The model is based on the molecular dynamics (MD) simulation in addition to phase field (PF) method, through which the discrete model of particles motion is superimposed on the continuum model of fluids which is a new ide a in numerical modeling. The liquid–liquid interface is modeled using the diffuse interface model.
Findings
For NPs smaller than the interfacial thickness, the results obtained show that the concentration gradient of one fluid in the other gives rise to a hydrodynamic drag force that drives the NPs to agglomerate at the interface. Whereas, for spherical NPs greater than the interfacial thickness, the results show that such NPs oscillate at the interface which agrees with some experimental studies.
Practical implications
The results are important in the field of numerical modeling, especially that the model is general and can be used to study different systems. This will be of great interest in the field of studying the behavior of NPs inside fluids and near interfaces, which enters in many industrial applications.
Originality/value
The idea of superimposing the molecular dynamic method on the PF method is a new idea in numerical modeling.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献