A novel method for gear gravimetric wear prediction based on improved particle swarm optimization and non-stationary random process probability distribution fitting

Author:

Chen Cheng,Wang Honghua

Abstract

Purpose Stimulated by previous reference, which proposed making straight line of regression to test gear gravimetric wear loss sequence distribution, this paper aims to propose using straight line of regression to fit gear gravimetric wear loss sequence based on stationary random process suppose. Faced to that the stationary random sequence suppose had not been proved by previous reference, and that prediction did not present high precision, this paper proposes a method of fitting non-stationary random process probability distribution function. Design/methodology/approach Firstly, this paper proposes using weighted sum of Gauss items to fit zero-step approximate probability density. Secondly, for the beginning, this paper uses the method with few Gauss items under low precision. With the amount of points increasing, this paper uses more Gauss items under higher precision, and some Gauss items and some former points are deleted under precision condition. Thirdly, for particle swarm optimization with constraint problem, this paper proposed improved method, and the stop condition is under precision condition. Findings In experiment data analysis section, gear wear loss prediction is done by the method proposed by this paper. Compared with the method based on the stationary random sequence suppose by prediction relative error, the method proposed by this paper lowers the relative error whose absolute values are more than 5%, except when the current point sequence number is 2, and retains the relative error, whose absolute values are lower than 5%, still lower than 5%. Originality/value Finally, the method proposed by this paper based on non-stationary random sequence suppose is proved to be the better method in gear gravimetric wear loss prediction.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference16 articles.

1. I-MOPSO: a suitable PSO algorithm for many-objective optimization,2012

2. Partial least squares regression performs well in MRI-based individualized estimations;Frontier in Neuroscience,2019

3. Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems;Neurocomputing,2012

4. A stochastic prediction of roughness evolution in dynamic contact modelling applied to gear mild wear and contact fatigue;Tribology International,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3