Author:
Armand Robinson Mouafo Teifouet,Adali Sarp
Abstract
Purpose
Cantilever plates subject to axial flow can lose stability by flutter and properties such as viscoelasticity and laminar friction affect dynamic stability. The purpose of the present study is to investigate the dynamic stability of viscoelastic cantilever plates subject to axial flow by using the differential quadrature method.
Design/methodology/approach
Equation of motion of the viscoelastic plate is derived by implementing Kelvin-Voigt model of viscoelasticity and applying inverse Laplace transformation. The differential quadrature method is employed to discretize the equation of motion and the boundary conditions leading to a generalized eigenvalue problem. The solution is verified using the existing results in the literature and numerical results are given for critical flow velocities
Findings
It is observed that higher aspect ratios lead to imaginary part of third frequency becoming negative and causing single-mode flutter instability. It was found that flutter instability does not occur at low aspect ratios. Moreover the friction coefficient is found to affect the magnitude of critical flow velocity, however, its effect on the stability behaviour is minor.
Originality/value
The effects of various problem parameters on the dynamic stability of a viscoelastic plate subject to axial flow were established. It was shown that laminar friction coefficient of the flowing fluid increases the critical fluid velocity and higher aspect ratios lead to single-mode flutter instability. The effect of increasing damping of viscoelastic material on the flutter instability was quantified and it was found that increasing viscoelasticity can lead to divergence instability.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献