Author:
Hu Zixiang,Zhang Shi,Zhang Yun,Zhou Huamin,Li Dequn
Abstract
Purpose
– The purpose of this paper is to propose an efficient iterative method for large-scale finite element equations of bad numerical stability arising from deformation analysis with multi-point constraint using Lagrange multiplier method.
Design/methodology/approach
– In this paper, taking warpage analysis of polymer injection molding based on surface model as an example, the performance of several popular Krylov subspace methods, including conjugate gradient, BiCGSTAB and generalized minimal residual (GMRES), with diffident Incomplete LU (ILU)-type preconditions is investigated and compared. For controlling memory usage, GMRES(m) is also considered. And the ordering technique, commonly used in the direct method, is introduced into the presented iterative method to improve the preconditioner.
Findings
– It is found that the proposed preconditioned GMRES method is robust and effective for solving problems considered in this paper, and approximate minimum degree (AMD) ordering is most beneficial for the reduction of fill-ins in the ILU preconditioner and acceleration of the convergence, especially for relatively accurate ILU-type preconditioning. And because of concerns about memory usage, GMRES(m) is a good choice if necessary.
Originality/value
– In this paper, for overcoming difficulties of bad numerical stability resulting from Lagrange multiplier method, together with increasing scale of problems in engineering applications and limited hardware conditions of computer, a stable and efficient preconditioned iterative method is proposed for practical purpose. Before the preconditioning, AMD reordering, commonly used in the direct method, is introduced to improve the preconditioner. The numerical experiments show the good performance of the proposed iterative method for practical cases, which is implemented in in-house and commercial codes on PC.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献