Big data analytics and demand forecasting in supply chains: a conceptual analysis

Author:

Hofmann Erik,Rutschmann Emanuel

Abstract

Purpose Demand forecasting is a challenging task that could benefit from additional relevant data and processes. The purpose of this paper is to examine how big data analytics (BDA) enhances forecasts’ accuracy. Design/methodology/approach A conceptual structure based on the design-science paradigm is applied to create categories for BDA. Existing approaches from the scientific literature are synthesized with industry knowledge through experience and intuition. Accordingly, a reference frame is developed using three steps: description of conceptual elements utilizing justificatory knowledge, specification of principles to explain the interplay between elements, and creation of a matching by conducting investigations within the retail industry. Findings The developed framework could serve as a guide for meaningful BDA initiatives in the supply chain. The paper illustrates that integration of different data sources in demand forecasting is feasible but requires data scientists to perform the job, an appropriate technological foundation, and technology investments. Originality/value So far, no scientific work has analyzed the relation of forecasting methods to BDA; previous works have described technologies, types of analytics, and forecasting methods separately. This paper, in contrast, combines insights and provides advice on how enterprises can employ BDA in their operational, tactical, or strategic demand plans.

Publisher

Emerald

Subject

Transportation,Business and International Management

Reference140 articles.

1. Big data analytics in E-commerce: a systematic review and agenda for future research;Electronic Markets,2016

2. Apple (2014), “Apple and IBM: the most enterprising apps ever”, Apple Homepage, available at: www.apple.com/business/mobile-enterprise-apps/ (accessed July 10, 2015).

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How chief data officers promote data-driven innovation: an empirical investigation;European Journal of Innovation Management;2024-08-23

2. A two-model integrated technology adoption framework for using blockchain in supply chain management: attitude towards blockchain as a mediator;Journal of Science and Technology Policy Management;2024-06-04

3. Economic forecasting with big data: A literature review;Journal of Management Science and Engineering;2024-06

4. Electricity Production Prediction by Microsoft Azure Machine Learning Service and Python User Blocks;Advances in Environmental Engineering and Green Technologies;2024-05-17

5. From Insight to Advantage;Advances in Marketing, Customer Relationship Management, and E-Services;2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3