Author:
Hofmann Erik,Rutschmann Emanuel
Abstract
Purpose
Demand forecasting is a challenging task that could benefit from additional relevant data and processes. The purpose of this paper is to examine how big data analytics (BDA) enhances forecasts’ accuracy.
Design/methodology/approach
A conceptual structure based on the design-science paradigm is applied to create categories for BDA. Existing approaches from the scientific literature are synthesized with industry knowledge through experience and intuition. Accordingly, a reference frame is developed using three steps: description of conceptual elements utilizing justificatory knowledge, specification of principles to explain the interplay between elements, and creation of a matching by conducting investigations within the retail industry.
Findings
The developed framework could serve as a guide for meaningful BDA initiatives in the supply chain. The paper illustrates that integration of different data sources in demand forecasting is feasible but requires data scientists to perform the job, an appropriate technological foundation, and technology investments.
Originality/value
So far, no scientific work has analyzed the relation of forecasting methods to BDA; previous works have described technologies, types of analytics, and forecasting methods separately. This paper, in contrast, combines insights and provides advice on how enterprises can employ BDA in their operational, tactical, or strategic demand plans.
Subject
Transportation,Business and International Management
Reference140 articles.
1. Big data analytics in E-commerce: a systematic review and agenda for future research;Electronic Markets,2016
2. Apple (2014), “Apple and IBM: the most enterprising apps ever”, Apple Homepage, available at: www.apple.com/business/mobile-enterprise-apps/ (accessed July 10, 2015).
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献