A survey on discrete space and continuous space facility layout problems

Author:

Hunagund Irappa Basappa,Pillai V. Madhusudanan,U.N. Kempaiah

Abstract

Purpose The purpose of this paper is to review, evaluate and classify the academic research that has been published in facility layout problems (FLPs) and to analyse how researches and practices on FLPs are. Design/methodology/approach The review is based on 166 papers published from 1953 to 2021 in international peer-reviewed journals. The literature review on FLPs is presented under broader headings of discrete space and continuous space FLPs. The important formulations of FLPs under static and dynamic environments represented in the discrete and continuous space are presented. The articles reported in the literature on various representations of facilities for the continuous space Unequal Area Facility Layout Problems (UA-FLPs) are summarized. Discussed and commented on adaptive and robust approaches for dynamic environment FLPs. Highlighted the application of meta-heuristic solution methods for FLPs of a larger size. Findings It is found that most of the earlier research adopted the discrete space for the formulation of FLPs. This type of space representation for FLPs mostly assumes an equal area for all facilities. UA-FLPs represented in discrete space yield irregular shape facilities. It is also observed that the recent works consider the UA-FLPs in continuous space. The solution of continuous space UA-FLPs is more accurate and realistic. Some of the recent works on UA-FLPs consider the flexible bay structure (FBS) due to its advantages over the other representations. FBS helps the proper design of aisle structure in the detailed layout plan. Further, the recent articles reported in the literature consider the dynamic environment for both equal and unequal area FLPs to cope with the changing market environment. It is also found that FLPs are Non-deterministic Polynomial-complete problems, and hence, they set the challenges to researchers to develop efficient meta-heuristic methods to solve the bigger size FLPs in a reasonable time. Research limitations/implications Due to the extremely large number of papers on FLPs, a few papers may have inadvertently been missed. The facility layout design research domain is extremely vast which covers other areas such as cellular layouts, pick and drop points and aisle structure design. This research review on FLPs did not consider the papers published on cellular layouts, pick and drop points and aisle structure design. Despite the possibility of not being all-inclusive, the authors firmly believe that most of the papers published on FLPs are covered and the general picture presented on various approaches and parameters of FLPs in this paper are precise and trustworthy. Originality/value To the best of the authors’ knowledge, this paper reviews and classifies the literature on FLPs for the first time under the broader headings of discrete space and continuous space representations. Many important formulations of FLPs under static and dynamic environments represented in the discrete and continuous space are presented. This paper also provides the observations from the literature review and identifies the prospective future directions.

Publisher

Emerald

Subject

Management of Technology and Innovation,Strategy and Management,Business and International Management

Reference163 articles.

1. Parallel neighborhood search for solving fuzzy multi-objective dynamic facility layout problem;The International Journal of Advanced Manufacturing Technology,2013

2. Fuzzy inferencing in the web page layout design;WSMAI,2003

3. A survey on multi-floor facility layout problems;Computers and Industrial Engineering,2017

4. Fuzzy approach to the robust facility layout in uncertain production environments;International Journal of Production Research,2001

5. A non-dominated ranking multi objective genetic algorithm and electre method for the facility layout problems;Expert Systems with Applications,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3