Personal thermal comfort models: a deep learning approach for predicting older people’s thermal preference

Author:

Arakawa Martins LarissaORCID,Soebarto VeronicaORCID,Williamson Terence,Pisaniello Dino

Abstract

PurposeThis paper presents the development of personal thermal comfort models for older adults and assesses the models’ performance compared to aggregate approaches. This is necessary as individual thermal preferences can vary widely between older adults, and the use of aggregate thermal comfort models can result in thermal dissatisfaction for a significant number of older occupants. Personalised thermal comfort models hold the promise of a more targeted and accurate approach.Design/methodology/approachTwenty-eight personal comfort models have been developed, using deep learning and environmental and personal parameters. The data were collected through a nine-month monitoring study of people aged 65 and over in South Australia, who lived independently. Modelling comprised dataset balancing and normalisation, followed by model tuning to test and select the best hyperparameters’ sets. Finally, models were evaluated with an unseen dataset. Accuracy, Cohen’s Kappa Coefficient and Area Under the Receiver Operating Characteristic Curve (AUC) were used to measure models’ performance.FindingsOn average, the individualised models present an accuracy of 74%, a Cohen’s Kappa Coefficient of 0.61 and an AUC of 0.83, representing a significant improvement in predictive performance when compared to similar studies and the “Converted” Predicted Mean Vote (PMVc) model.Originality/valueWhile current literature on personal comfort models have focussed solely on younger adults and offices, this study explored a methodology for older people and their dwellings. Additionally, it introduced health perception as a predictor of thermal preference – a variable often overseen by architectural sciences and building engineering. The study also provided insights on the use of deep learning for future studies.

Publisher

Emerald

Subject

Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Architecture,Cultural Studies

Reference64 articles.

1. Deep learning using rectified linear units (ReLU);ArXiv,2018

2. Thermal adaptation in occupant-driven HVAC control;Journal of Building Engineering,2019

3. 2011 Compendium of Physical Activities: a second update of codes and MET values;Medicine and Science in Sports and Exercise,2011

4. User-centered environmental control: a review of current findings on personal conditioning systems and personal comfort models;Energy and Buildings,2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3