Abstract
Purpose
The purpose of this paper is to identify the different sequence generation techniques for learning, which are applied to a broad category of personalized learning experiences. The papers have been classified using different attributes, such as the techniques used for sequence generation, attributes used for sequence generation; whether the learner is profiled automatically or manually; and whether the path generated is dynamic or static.
Design/methodology/approach
The search for terms learning sequence generation and E-learning produced thousands of results. The results were filtered, and a few questions were answered before including them in the review. Papers published only after 2005 were included in the review.
Findings
The findings of the paper were: most of the systems generated non-adaptive paths. Systems asked the learners to manually enter their attributes. The systems used one or a maximum of two learner attributes for path generation.
Originality/value
The review pointed out the importance and benefits of learning sequence generation systems. The problems in existing systems and future areas of research were identified which will help future researchers to pursue research in this area.
Subject
Computer Science Applications,Education
Reference90 articles.
1. Intuitionistic fuzzy Ant colony optimization for course sequencing in E-learning,2016
2. Constructing a Bayesian belief network to generate learning path in adaptive hypermedia system;Journal of Computer Science and Cybernetics,2008
3. Design a personalized e-learning system based on item response theory and artificial neural network approach;Expert Systems with Applications,2009
4. Ant colony algorithm and new pheromone to adapt units sequence to learners’ profiles,2014
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献