Predictors of high‐quality answers

Author:

Blooma Mohan John,Hoe‐Lian Goh Dion,Yeow‐Kuan Chua Alton

Abstract

PurposeThe purpose of this study is to examine the predictors of high‐quality answers in a community‐driven question answering service (Yahoo! Answers).Design/methodology/approachThe identified predictors were organised into two categories: social and content features. Social features refer to the community aspects of the users and are extracted from explicit user interaction and feedback. Content features refer to the intrinsic and extrinsic content quality of answers that could be used to select the high‐quality answers. In total the framework built in this study comprises 17 features from two categories. Based on a randomly selected dataset of 1,600 question‐answer pairs from Yahoo! Answers, high‐quality answer predictors were identified.FindingsThe results of the analysis showed the importance of content appraisal features over social and textual content features. The features identified as strongly associated with high‐quality answers include positive votes, completeness, presentation, reliability and accuracy. Features weakly associated with high‐quality answers were high frequency words, answer length, and best answers answered. Features related to the asker's user history were found not to be associated with high‐quality answers.Practical implicationsThis work could help in the reuse of answers for new questions. The study identified features that most influence the selection of high‐quality answers. Hence they could be used to select high‐quality answers for answering similar questions posed by users in the future. When a new question is posed, similar questions are first identified, and the answers for these questions are extracted and routed to the proposed quality framework for identifying high‐quality answers. Based on the overall quality index computed, the high‐quality answer could be returned to the asker.Originality/valuePrevious studies in identifying high‐quality answers were conducted using either of two approaches. First using social and textual content features found in community‐driven question answering services and second using content appraisal features by thorough assessment of answer quality provided by experts. However no study had integrated both approaches. Hence this study addresses this gap by developing an integrated generalisable framework to identify features that influence high‐quality answers.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3