Sustainability in university campus: options for achieving nearly zero energy goals

Author:

Fonseca Paula,Moura Pedro,Jorge Humberto,de Almeida Aníbal

Abstract

Purpose The purpose of this study was to design a renovation plan for a university campus building (Department of Electrical and Computer Engineering) with the aim to achieve nearly zero energy performance, ensuring a low specific demand (lower than 44 kWh/m2) and a high level of on-site renewable generation (equivalent to more than 20 per cent of the energy demand). Design/methodology/approach The baseline demand was characterized based on energy audits, on smart metering data and on the existing building management system data, showing a recent reduction of the electricity demand owing to some implemented measures. The renovation plan was then designed with two main measures, the total replacement of the actual lighting by LEDs and the installation of a photovoltaic system (PV) with 78.8 kWp coupled with an energy storage system with 100 kWh of lithium-ion batteries. Findings The designed renovation achieved energy savings of 20 per cent, with 27.5 per cent of the consumed energy supplied by the PV system. This will ensure a reduction of the specific energy of the building to only 30 kWh/m2, with 42.4 per cent savings on the net-energy demand. Practical implications The designed renovation proves that it is possible to achieve nearly zero energy goals with cost-effective solutions, presenting the lighting renovation and the solar PV generation system a payback of 2.3 and 6.9 years, respectively. Originality/value This study innovated by defining ambitious goals to achieve nearly zero energy levels and presenting a design based on a comprehensive lighting retrofit and PV generation, whereas other studies are mostly based on envelope refurbishment and behaviour changes.

Publisher

Emerald

Subject

Education,Human Factors and Ergonomics

Reference24 articles.

1. ADENE (2015), “Eco.AP energy efficiency program in public administration”, available at: http://ecoap.pnaee.pt/ (accessed 6 January 2017).

2. Sustainable consumption: a teaching intervention in higher education;International Journal of Sustainability in Higher Education,2014

3. Cornell University (2016), “Options for achieving a carbon neutral campus by 2030”, Working paper, Cornell University Senior Leaders Climate Action Group, Ithaca.

4. The Brescia smart campus demonstrator. renovation toward a zero energy classroom building;Procedia Engineering,2015

5. dos Santos, C. and Matias, L. (2006), “Coefficients of thermal transmission of building envelope elements”, Working paper, LNEC, Lisbon.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3