Optimal trajectory planning of the industrial robot using hybrid S-curve-PSO approach

Author:

Patle Bhumeshwar Kujilal,Chen Shyh-Leh,Singh Anil,Kashyap Sunil Kumar

Abstract

Purpose The paper aims to develop an efficient and compact hybrid S-curve-PSO (particle swarm optimization) controller for the optimal trajectory planning of industrial robots in the presence of obstacles, especially those used in pick-and-place operations. Design/methodology/approach The proposed methodology comprises a monotonic trajectory through bounded entropy of speed, velocity, acceleration and jerk. Thus, the robot’s trajectory planning corresponds with S-curve-PSO duality. This is achieved by dual navigation with minimal computational complexity. The matrix algebra-based computational complexity transforms the trajectory from random to compact. The linear programming problem represents the proposed robot in Euclidean space, and its optimal solution sets the corresponding optimal trajectory. Findings The proposed work ensures the efficient trajectory planning of the industrial robot in the presence of obstacles with optimized path length and time. The real-time and simulation analysis of the robot is presented for performance measurement, and their outcomes demonstrate a good correlation. Compared with the existing controller, it gives a noteworthy improvement in performance. Originality/value The novel S-curve-PSO hybrid approach is presented here, along with the LIDAR sensors, which generate the environment map and detect obstacles for autonomous trajectory planning. Based on the sensory information, the proposed approach generates the optimal trajectory by avoiding obstacles and minimizing the travel time, jerk, velocity and acceleration. The hybrid S-curve-PSO approach for optimal trajectory planning of the industrial robot in the presence of obstacles has not been presented by any researchers. This method considers the robot’s kinematics as well as its dynamics. The implementation of the PSO makes it computationally superior and faster. The selection of best-fit parameters by PSO assures the optimized trajectory in the presence of obstacles and uncertainty.

Publisher

Emerald

Reference30 articles.

1. Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots;The International Journal of Advanced Manufacturing Technology,2017

2. Time-optimal freeform S-curve profile under positioning error and robustness constraints;IEEE/ASME Transactions on Mechatronics,2018

3. The use of higher-degree polynomials for trajectory planning with jerk, acceleration and velocity constraints;International Journal of Computer Applications in Technology,2020

4. Nonlinear friction and dynamical identification for a robot manipulator with improved cuckoo search algorithm;Journal of Robotics,2018

5. Time optimal trajectory planning algorithm for robotic manipulator based on locally chaotic particle swarm optimization;Chinese Journal of Electronics,2022

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3