Housing affordability and housing demand assessment for urban poor in India using the hedonic model

Author:

Rao Prabhat Kumar,Biswas Arindam

Abstract

Purpose This study aims to assess housing affordability and estimate demand using a hedonic regression model in the context of Lucknow city, India. This study assesses housing affordability by considering various housing and household-related variables. This study focuses on the impoverished urban population, as they experience the most severe housing scarcity. This study’s primary objective is to understand the demand dynamics within the market comprehensively. An understanding of housing demand can be achieved through an examination of its characteristics and components. Individuals consider the implicit values associated with various components when deciding to purchase or rent a home. The components and characteristics have been obtained from variables relating to housing and households. Design/methodology/approach A socioeconomic survey was conducted for 450 households from slums in Lucknow city. Two-stage regression models were developed for this research paper. A hedonic price index was prepared for the first model to understand the relationship between housing expenditure and various housing characteristics. The housing characteristics considered for the hedonic model are dwelling unit size, typology, condition, amenities and infrastructure. In the second stage, a regression model is created between household characteristics. The household characteristics considered for the demand estimation model are household size, age, education, social category, income, nonhousing expenditure, migration and overcrowding. Findings Based on the findings of regression model results, it is evident that the hedonic model is an effective tool for the estimation of housing affordability and housing demand for urban poor. Various housing and household-related variables affect housing expenditure positively or negatively. The two-stage hedonic regression model can define willingness to pay for a particular set of housing with various attributes of a particular household. The results show the significance of dwelling unit size, quality and amenities (R2 > 0.9, p < 0.05) for rent/imputed rent. The demand function shows that income has a direct effect, whereas other variables have mixed effects. Research limitations/implications This study is case-specific and uses a data set generated from a primary survey. Although household surveys for a large sample size are resource-intensive exercises, they provide an opportunity to exploit microdata for a better understanding of the complex housing situation in slums. Practical implications All the stakeholders can use the findings to create an effective housing policy. The variables that are statistically significant and have a positive relationship with housing costs should be deliberated upon to provide the basic standard of living for the urban poor. The formulation of policies should duly include the housing preferences of the economically disadvantaged population residing in slum areas. Originality/value This paper uses primary survey data (collected by the authors) to assess housing affordability for the urban poor of Lucknow city. It makes the results of the study credible and useful for further applications.

Publisher

Emerald

Subject

General Economics, Econometrics and Finance

Reference44 articles.

1. Housing demand and housing policy in urban Bangladesh;Urban Studies,2015

2. Quantitative and qualitative demand for slum and non-slum housing in Delhi: empirical evidences from household data;Habitat International,2013

3. A study of residential housing demand in India;NHB-NIBM,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3