The influence of the cutting edge shape on high performance cutting

Author:

Burek Jan,Zylka Lukasz,Plodzien Marcin,Gdula Michal,Sulkowicz Pawel

Abstract

Purpose The purpose of this paper is to determine the influence of the shape of a cutting edge on high-performance milling high-performance cutting. The main purpose of the test was to determine the possibility of increasing the efficiency of machining AlZn5.5CuMg alloy, which is used mainly for the thin-walled structural aerospace components. Design/methodology/approach In all, eight cutters for machining aluminum alloys with different shape of the cutting edge (1 – continuous, 4 – interrupted, 3 – wavy) were tested. The influence of different shapes of a cutting edge on cutting force components and vibration amplitude was analyzed. Furthermore, the impact of a chip breaker on the form of a chip was determined. Findings The conducted test shows that using discontinuous shapes of a cutting edge has impact on the reduction of the cutting force components and, in most cases, on the increase of vibration amplitude. Moreover, using a chip breaker caused significant chip dispersion. The optimal shape of a cutting edge for cutting AlZn5.5CuMg alloy is fine wavy shape. Practical implications Potential practical application of the research is high-performance milling of AlZn5.5CuMg alloy, for example, production of thin-walled aerospace structural components. Originality/value Different shapes of a cutting edge during high-performance milling of aluminum alloy were tested. The influence of tested geometries on HPC process was determined. The most favourable shape of a cutting edge for high-performance cutting of AlZn5.5CuMg alloy was determined.

Publisher

Emerald

Subject

Aerospace Engineering

Reference18 articles.

1. Andrae, P. (2002), Hochleistungszerspanung von Aluminiumknetlegierungen, Dr.-Ing. Dissertation, Hannover.

2. The effect of serration on mechanics and stability of milling cutters;International Journal of Machine Tools and Manufacture,2010

3. Fiedler, U. (2003), Prozesssicherheit beim HSC-Fräsen von Aluminium-Knetlegierungen, Dr.-Ing. Dissertation, Aachen.

4. Speed-varying cutting force coefficient identification in milling;Precision Engineering,2015

5. Tehran international congress on manufacturing engineering,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3