Iterative learning data driven strategy for aircraft control system

Author:

Jianhong Wang,Xiaoyong Guo

Abstract

Purpose This paper aims to extend the previous contributions about data-driven control in aircraft control system from academy and practice, respectively, combining iteration and learning strategy. More specifically, after returning output signal to input part, and getting one error signal, three kinds of data are measured to design the unknown controller without any information about the unknown plant. Using the main essence of data-driven control, iterative learning idea is introduced together to yield iterative learning data-driven control strategy. To get the optimal data-driven controller, other factors are considered, for example, adaptation, optimization and learning. After reviewing the aircraft control system in detail, the numerical simulation results have demonstrated the efficiency of the proposed iterative learning data-driven control strategy. Design/methodology/approach First, considering one closed loop system corresponding to the aircraft control system, data-driven control strategy is used to design the unknown controller without any message about the unknown plant. Second, iterative learning idea is combined with data-driven control to yield iterative learning data-driven control strategy. The optimal data-driven controller is designed by virtue of power spectrum and mathematical optimization. Furthermore, adaptation is tried to combine them together. Third, to achieve the combination with theory and practice, our proposed iterative learning data-driven control is applied into aircraft control system, so that the considered aircraft can fly more promptly. Findings A novel iterative learning data-driven strategy is proposed to efficiently achieve the combination with theory and practice. First, iterative learning and data-driven control are combined with each other, being dependent of adaptation and optimization. Second, iterative learning data-driven control is proposed to design the flight controller for the aircraft system. Generally, data-driven control is more wide in our living life, so it is important to introduce other fields to improve the performance of data-driven control. Originality/value To the best of the authors’ knowledge, this new paper extends the previous contributions about data-driven control by virtue of iterative learning strategy. Specifically, iteration means that the optimal data-driven controller is solved as one recursive form, being related with one gradient descent direction. This novel iterative learning data-driven control has more advanced properties, coming from data driven and adaptive iteration. Furthermore, it is a new subject on applying data-driven control into the aircraft control system.

Publisher

Emerald

Subject

Aerospace Engineering

Reference13 articles.

1. A survey of iterative learning control;IEEE Control Systems Magazine,2006

2. Iterative learning control for constrained linear systems;International Journal of Control,2010

3. Synthesis cascade estimation for aircraft system identification;Aircraft Engineering and Aerospace Technology,2022

4. Direct data driven safety control for aircraft flight system-Part1: the theory case;Aircraft Engineering and Aerospace Technology,2023

5. Synthesis analysis for multi aircrafts formation anomaly detection;Aircraft Engineering and Aerospace Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3