In-flight thrust monitoring: an acoustics-based approach

Author:

Lowe K. Todd,Otero Raul,Ng Wing

Abstract

Purpose The purpose of this paper is to present an acoustics-based method for measuring turbofan nozzle exhaust thrust, while assessing the potential of scaling the methods for in-flight measurements. Design/methodology/approach Although many methods proposed for achieving in-flight thrust measurements involve complicated, sensitive and expense instruments, an acoustics-based approach is discussed that greatly simplifies the technology development pathway to in-flight applications. Findings Results are provided for a minimum set of sensors applied in the exhaust of a research turbofan engine at Virginia Tech, showing the difference in acoustics-measured thrust and nozzle thrust found by integrating thermocouple and Kiel probe measurements to be less than 6 per cent at the maximum fan speed examined. Practical implications Measuring accurate thrust values in flight will prove immediately valuable for installed thrust validation and engine health monitoring. Acoustics-based methodologies are attractive because of the robustness and low cost of sensors and sources. The value of in-flight thrust measurements, along with the benefits of acoustic approaches, makes the current topic of great interest for further development. Originality/value This paper presents unique applications of a time-of-flight acoustic thrust sensor, while providing an original assessment of technological challenges involved with the progression of the technique for in-flight measurements.

Publisher

Emerald

Subject

Aerospace Engineering

Reference16 articles.

1. A Martian sonic anemometer,2005

2. On sonic anemometer measurement theory;Journal of Wind Engineering and Industrial Aerodynamics,2000

3. Sonic anemometry of planetary atmospheres;Journal of Geophysical Research,2003

4. Another look at sonic thermometry;Boundary-Layer Meteorology,1991

5. Velocity, vorticity, and Mach number,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3