Robust adaptive preview control design for autonomous carrier landing of F/A-18 aircraft

Author:

Bhatia Ajeet Kumar,Ju Jiang,Ziyang Zhen,Ahmed Nigar,Rohra Avinash,Waqar Muhammad

Abstract

Purpose The purpose of this paper is to design an innovative autonomous carrier landing system (ACLS) using novel robust adaptive preview control (RAPC) method, which can assure safe and successful autonomous carrier landing under the influence of airwake disturbance and irregular deck motion. To design a deck motion predictor based on an unscented Kalman filter (UKF), which predicts the touchdown point, very precisely. Design/methodology/approach An ACLS is comprising a UKF based deck motion predictor, a previewable glide path module and a control system. The previewable information is augmented with the system and then latitude and longitudinal controllers are designed based on the preview control scheme, in which the robust adaptive feedback and feedforward gain’s laws are obtained through Lyapunov stability theorem and linear matrix inequality approach, guarantying the closed-loop system’s asymptotic stability. Findings The autonomous carrier landing problem is solved by proposing robust ACLS, which is validated through numerical simulation in presence of sea disturbance and time-varying external disturbances. Practical implications The ACLS is designed considering the practical aspects of the application, presenting superior performance with extended robustness. Originality/value The novel RAPC, relative motion-based guidance system and deck motion compensation mechanism are developed and presented, never been implemented for autonomous carrier landing operations.

Publisher

Emerald

Subject

Aerospace Engineering

Reference31 articles.

1. Adaptive preview control: a novel control structure;IFAC Proceedings Volumes,2012

2. Design of adaptive preview control;Journal of Control Engineering and Applied Informatics,2013

3. Control system design optimisation via genetic programming,2007

4. Control parameter design for automatic carrier landing system via pigeon-inspired optimization;Nonlinear Dynamics,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3