Aircraft route optimization with simulated annealing for a mixed airspace composed of free and fixed route structures

Author:

Aydoğan EmreORCID,Cetek CemORCID

Abstract

Purpose The purpose of this paper is to create a flight route optimization for all flights that aims to minimize the total cost consists of fuel cost, ground delay cost and air delay cost over the fixed route and free route airspaces. Design/methodology/approach Efficient usage of current available airspace capacity becomes more and more important with the increasing flight demands. The efficient capacity usage of an airspace is generally in contradiction to optimum flight efficiency of a single flight. It can only be achieved with the holistic approach that focusing all flights over mixed airspaces and their routes instead of single flight route optimization for a single airspace. In the scope of this paper, optimization methods were developed to find the best route planning for all flights considering the benefits of all flights not only a single flight. This paper is searching for an optimization to reduce the total cost for all flights in mixed airspaces. With the developed optimization models, the determination of conflict-free optimum routes and delay amounts was achieved with airway capacity and separation minimum constraints in mixed airspaces. The mathematical model and the simulated annealing method were developed for these purposes. Findings The total cost values for flights were minimized by both developed mathematical model and simulated annealing algorithm. With the mathematical model, a reduction in total route length of 4.13% and a reduction in fuel consumption of 3.95% was achieved in a mixed airspace. The optimization algorithm with simulated annealing has also 3.11% flight distance saving and 3.03% fuel consumption enhancement. Research limitations/implications Although the wind condition can change the fuel consumption and flight durations, the paper does not include the wind condition effects. If the wind condition effect is considered, the shortest route may not always cause the least fuel consumption especially under the head wind condition. Practical implications The results of this paper show that a flight route optimization as a holistic approach considering the all flight demand information enhances the fuel consumption and flight duration. Because of this reason, the developed optimization model can be effectively used to minimize the fuel consumption and reduce the exhaust emissions of aircraft. Originality/value This paper develops the mathematical model and simulated annealing algorithm for the optimization of flight route over the mixed airspaces that compose of fixed and free route airspaces. Each model offers the best available and conflict-free route plan and if necessary required delay amounts for each demanded flight under the airspace capacity, airspace route structure and used separation minimum for each airspace.

Publisher

Emerald

Subject

Aerospace Engineering

Reference35 articles.

1. Free route airspace for efficient air traffic management;Engineering Power,2020

2. A two-stage route optimization algorithm for light aircraft transport systems;Transportation Research Part C: Emerging Technologies,2019

3. Integration of airport terminal arrival route selection, runway assignment and aircraft trajectory optimisation,2019

4. A two-step approach for airborne delay minimization using pretactical conflict resolution in free-route airspace;Journal of Advanced Transportation,2019

5. Optimal trajectories allocation method in free route airspace, based on safety criteria – generic assumptions, concept of optimisation algorithms and methods;Archives of Transport,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3