Impact time guidance law for arbitrary lead angle using sliding mode control

Author:

Du He,Yang Ming,Wang Songyan,Chao Tao

Abstract

Purpose This paper aims to investigate a novel impact time control guidance (ITCG) law based on the sliding mode control (SMC) for a nonmaneuvering target using the predicted interception point (PIP). Design/methodology/approach To intercept the target with the minimal miss distance and desired impact time, an estimation of time-to-go is introduced. This estimation results in a precise impact time for multimissiles salvo attack the target at the same time. Even for a large lead angle, the desired impact time is achieved by using the sliding mode and Lyapunov stability theory. The singularity issue of the proposed impact time guidance laws is also analyzed to achieve an arbitrary lead angle with the desired impact time. Findings Numerical scenarios with desired impact time are presented to illustrate the performance of the proposed ITCG law. Comparison with the state-of-art impact time guidance laws proves that the guidance law in this paper can enable the missile to intercept the target with minimal miss distance and final impact time error. This method enables multiple missiles to attack the target simultaneously with different distances and arbitrary lead angles. Originality/value An ITCG law based on sliding mode and Lyapunov stability theory is proposed, and the switching surface is designed based on a novel estimation time-to-go for the missile to intercept the target with minimal miss distance. To intercept the target with initial arbitrary lead angles and desired impact time, the authors analysis the singular issue in SMC to ensure that the missile can intercept the target with arbitrary lead angle. The proposed approach for a nonmaneuvering target using the PIP has simple forms, and therefore, they have the superiority of being implemented easily.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3