A fast radiometric correction method for Sentinel-2 satellite images

Author:

Moradi Elahe,Sharifi Alireza

Abstract

Purpose Radiometric calibration is a method that estimates the reflection of the target from the measured input radiation. The purpose of this study is to radiometrically calibrate three spectral bands of Sentinel-2A, including green, red and infrared. For this purpose, Landsat-8 OLI data are used. Because they have bands with the same wavelength range and they have the same structure. As a result, Landsat-8 OLI is appropriate for relative radiometric calibration. Design/methodology/approach The method used in this study is radiometric calibration uncorrected data from a sensor with corrected data from another sensor. Also, another aim of this study is a comparison between radiometric correction data and data that, in addition to radiometric correction, has been sharpened with panchromatic data. In this method, both of them have been used for radiometric calibration. Calibration coefficients have been obtained using the first-order polynomial equation. Findings This study showed that the corrected data has more valid answers than corrected and sharpened data. This method studied three land-cover types, including soil, water and vegetation, which it obtained the most accurate coefficients of calibration for soil class because R-square in all three bands was above 88%, and the root mean square error in all three bands was below 0.01. In the case of water and vegetation classes, only results of red and infrared bands were suitable. Originality/value For validating this method, the radiometric correction module of SNAP software was used. According to the results, the coefficient of radiometric calibration of the Landsat-8 sensor was very close to the coefficients obtained from the corrected data by SNAP.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybridized Clustering Algorithm and Ensemble Learning for Monitoring Paddy Crop Growth Analysis;The International Arab Journal of Information Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3