Efficient analysis of shear wall-frame structural systems

Author:

Xia Guiyun,Shu Wenya,Stanciulescu Ilinca

Abstract

Purpose This paper aims to propose an efficient method to conduct the preliminary analyses of medium or high-rise wall-frame structural systems with vertically varying properties. To this end, a finite element is formulated to take the shear deformation of the shear wall and the constrained moment of the link beam. Design/methodology/approach The differential equation of the structure is derived from the total potential energy. Its homogenous solutions are functions of initial parameters (deflections and inner forces). To solve the structure with vertically non-uniform properties, the authors first use the classical Timoshenko beam element and then heuristically propose a finite element that uses the initial parameter solutions as shape functions and is easier to implement. A post-processing method to compute the shear force in the frame and shear wall is developed. Modal analysis using the consistent mass matrix is also incorporated. Numerical examples demonstrate the accuracy and mesh independency of the proposed element. Findings The shear deformation of the shear wall and the constrained moment of the link beam significantly influence the static response of the structure. Taking into account the shear deformation can eliminate the misleading result of zero-base shear force of the frame and give much better predictions of the system natural frequencies. Originality/value The proposed method achieves higher accuracy than the classical approach most often used. The finite element formulation derived from transformations of the initial parameter solutions is simple and has superior numerical performance. The post-processing method allows for a fast determination of the shear force distributions in the shear wall and frame.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference22 articles.

1. Fundamental period of infilled RC frame structures with vertical irregularity;Structural Engineering and Mechanics,2017

2. An approximate method for static and dynamic analyses of symmetric wall‐frame buildings;The Structural Design of Tall and Special Buildings,2009

3. A method for lateral static and dynamic analyses of wall-frame buildings using one dimensional finite element;Scientific Research and Essays,2011

4. Dynamic analysis of coupled shear wall-frame systems;Journal of Sound and Vibration,1996

5. An investigation on the interaction of moment‐resisting frames and shear walls in RC dual systems using endurance time method;The Structural Design of Tall and Special Buildings,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3