Computational study of a dorsolumbar complete burst fracture and its fixation methods

Author:

Moura RitaORCID,Fidalgo Daniel,Oliveira DulceORCID,Reis Ana Rita,Areias BrunoORCID,Sousa Luísa,Gonçalves João M.,Sousa Henrique,Natal Jorge R.N.,Parente Marco

Abstract

PurposeDuring a fall, a significant part of the major forces is absorbed by the dorsolumbar column area. When the applied stresses exceed the yield strength of the bone tissue, fractures can occur in the vertebrae. Vertebral fractures constitute one of the leading causes of trauma-related hospitalizations, accounting for 15% of all admissions. Posterior pedicle screw fixation has become a common method for treating burst fractures. However, physicians remain divided on the number of fixed segments that are needed to improve clinical outcomes. The present work aims to understand the biomechanical impact of different fixation methods, improving surgical treatments.Design/methodology/approachA finite element model of the dorsolumbar spine (T11–L3) section, including cartilages, discs and ligaments, was created. The dorsolumbar stability was tested by comparing two different surgical orthopedic treatments for a fractured first lumbar vertebra on the L1 vertebra: the posterior short segment fixation with intermediate screws (PSS) and the posterior long segment fixation (PL). Distinct loads were applied to represent daily activities.FindingsResults show that both procedures provide acceptable segment fixation, with the PL offering less freedom of movement, making it more stable than the PSS. The PL approach can be the best choice for an unstable fracture as it leads to a stiffer spine segment.Originality/valueThis study introduces a novel computational model designed for the biomechanical analysis of dorsolumbar injuries, aiming to identify the optimal treatment approaches within both clinical and surgical contexts.

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3