Author:
Guesmi Tawfik,Alshammari Badr M.
Abstract
Purpose
Low-frequency oscillations of 0.1 to 3 Hz are prejudicial to the power system stability. Within this context, this study aims to present an improved artificial bee colony (ABC)-based algorithm for optimal setting of multimachine power system stabilizers (PSSs) under several loading conditions simultaneously.
Design/methodology/approach
The proposed approach symbolized by GCABC incorporates the grenade explosion technique and the Cauchy operator in the employed bee and onlooker bee phases to avoid random search. The parameters of the grenade explosion method and Cauchy operator based ABC(GCABC)-based PSSs (GCABC-PSSs) are tuned to place all undamped and lightly damped electromechanical modes in a prespecified zone in the s-plan.
Findings
Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and the dominance of the proposed controllers GCABC-PSSs in the improvement of the system stability under several disturbances and large set of operating points compared with the classical ABC method and genetic algorithm-based PSSs.
Originality/value
The novelty of the study is to efficiently implement a new optimization method called GCABC for an optimum design of PSSs. The design problem is formulated as a multi-objective optimization problem. In addition, all PSS parameters have been included in the space research.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献