Abstract
PurposeThis paper aims to design an event-triggered adaptive prescribed performance controller for flexible manipulators, with the primary objectives of achieving output performance constraints and addressing communication resource limitations.Design/methodology/approachThe authors propose a novel prescribed performance barrier Lyapunov function (PP-BLF) that considers both output and tracking performance constraints. The PP-BLF ensures that the system's output, transient behavior and steady-state performance, adhere to prescribed constraints. The boundary of the PP-BLF is established by an exponential function that decays over time. Notably, the PP-BLF can be applied seamlessly in unconstrained cases without necessitating controller redesign. Moreover, the controller design incorporates an event-triggered mechanism, effectively reducing the frequency of controller updates and optimizing the utilization of communication resources. Additionally, the authors employ adaptive techniques to estimate the system's unknown parameters and approximate unknown nonlinear functions using radial basis function neural networks (RBFNN). To address the challenge of “complexity explosion”, dynamic surface technology is employed.FindingsNumerical simulations are conducted under five different cases to verify the effectiveness of the proposed controller. The results demonstrate that the controller successfully constrains the output tracking error within the prescribed performance boundary. Moreover, compared with the traditional time-triggered mechanism, the event-triggered mechanism significantly reduces the controller's update frequency, resolving the problem of limited communication resources.Originality/valueThe paper reduces the update frequency of control signals and improves resource utilization through an event-triggered mechanism in the form of relative thresholds. The authors recognize that the event-triggered mechanism may impact the output performance of the system. To address this challenge, the authors propose a prescribed performance Barrier Lyapunov Function (PP-BLF). The PP-BLF is designed to effectively constrain the output performance of the system, ensuring satisfactory control even when the control signal updates are reduced.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献