Seismic rehabilitation effect in a steel moment frame subjected to tow critical loads

Author:

Faghihmaleki Hadi,Khaksar Najafi Elmira,Hooshmand Aini Ali

Abstract

Purpose The purpose of this paper is to present a probabilistic assessment and verify the effectiveness of seismic improvement schemes against earthquake, blast and progressive collapse. The probabilistic analysis is performed by taking into account the uncertainties in loading such as planar configuration and amplitude of the blast loading. A standard Monte Carlo (MC) simulation method is employed to generate various concepts of the uncertain parameters within the problem. For a given concept, various local dynamic analyses are performed within a certain range of distance, in order to quantify and locate the damage induced by impact wave on structural elements. In the next step, a limit state analysis is performed in order to investigate whether a progressive collapse mechanism forms under the acting loads or not. Design/methodology/approach ( | ) and ( | ) are blast fragility and seismic fragility, respectively; ( ) and ( ) are annual occurrence rate of earthquake and blast, respectively. The purpose of the current study is to calculate for the primary structure as well as the retrofitted structure. Annual occurrence rate of earthquake can be calculated by using probability seismic hazard analysis for the site of interest, where the structure is located. In this paper, blast fragility and seismic fragility are defined rather differently; in other words, seismic fragility is defined as the probability of structural collapse given a specified level of seismic intensity whereas blast fragility is defined as the probability of collapse given that a significant blast event takes place. Both blast and earthquake loading conditions involve the activation of energy dissipation mechanism and, as a consequence, both can be resisted employing ductility enhancing techniques, such as column wrapping or jacketing and steel bracing. Findings The current paper aims to present a probabilistic assessment of progressive collapse under blast and earthquake loads. Non-dependent and incompatible events are considered to obtain a general rate of collapse. Finally, probabilistic collapse rate was obtained for a moment frame before and after modifying with convergent steel brace (CBF). The purpose of doing so is to investigate whether seismic improvement schemes can reduce collapse risk of different critical events or not. Originality/value Objective of the present work is to present a methodology for calculating the annual risk of collapse for a civil structure subjected to both seismic and blast loads, using a bi-hazard approach. Given that a blast event takes place, the probability of progressive collapse is calculated using a MC simulation procedure. The simulation procedure implements an efficient non-linear limit state analysis, formulated and solved as a linear programming problem. The probability of collapse caused by an earthquake event can be calculated by integrating the seismic fragility of the structure and the seismic hazard for the site.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference13 articles.

1. Macromodel-based simulation of progressive collapse: RC frame structures;Journal of Structural Engineering,2008

2. Mitigating risk from abnormal loads and progressive collapse;Journal of Performance of Constructed Facilities,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3