Abstract
PurposeThe purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.Design/methodology/approachFatigue monitoring requires a fatigue model of the material, the stresses at specific points of the structure, a cycle counting technique and a fatigue damage criterion. Firstly, this paper reviews existing structural health monitoring (SHM) techniques, addresses their principal classifications and presents the main characteristics of each technique, with a particular emphasis on modal-based methodologies. Automated modal analysis, damage detection and localisation techniques are also reviewed. Fatigue monitoring is an SHM technique which evaluate the structural fatigue damage in real time. Stress estimation techniques and damage accumulation models based on the S-N field and the Miner rule are also reviewed in this paper.FindingsA vast amount of research has been carried out in the field of SHM. The literature about fatigue calculation, fatigue testing, fatigue modelling and remaining fatigue life is also extensive. However, the number of publications related to monitor the fatigue process is scarce. A methodology to perform real-time structural fatigue monitoring, in both time and frequency domains, is presented.Originality/valueFatigue monitoring can be combined (applied simultaneously) with other vibration-based SHM techniques, which might significantly increase the reliability of the monitoring techniques.
Subject
Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Reference220 articles.
1. Damage detection in bridges using modal curvatures: application to a real damage scenario;Journal of Sound and Vibration,1999
2. Modal scaling in OMA using the mass matrix of a finite element model,2014
3. Basic concepts of modal scaling,2019
4. Scaling factor estimation using an optimized mass change strategy. Part 1: theory,2007
5. Scaling factor estimation using an optimized mass change strategy. Part 2: experimental Results,2007
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献