Forward and backward mixed-mode crack estimation using artificial neural network

Author:

Khademalrasoul AbdolghafourORCID,Hatampour Zahra,Oulapour Masoud,Alavi Seyed Enayatollah

Abstract

PurposeIn this manuscript, the authors aimed to demonstrate the influences of influential parameters in mixed-mode crack propagation phenomenon. The authors attempted to cover almost all surrounding issues of this subject as the authors know simulating of propagating cracks as internal strong discontinuity is a complicated issue.Design/methodology/approachIn this manuscript, the authors demonstrated the influences of influential parameters in mixed-mode crack propagation phenomenon. The authors attempted to cover almost all surrounding issues of this subject as the authors know simulating of propagating cracks as internal strong discontinuity is a complicated issue. Furthermore, three different scenarios for crack growth are considered. In reality, edge-cracked plate, center-cracked plate and cracked plate in the presence of void and inclusion are studied. In fact, by designing suitable artificial neural network's (ANN) architectures all the three aforementioned conditions are trained and estimated through those architectures with very good agreement with input data. Also by conducting a series of sensitivity analysis, the most affecting factors in mixed-mode crack propagation in different situations are demonstrated. The obtained results are very interesting and useful for other researchers and also the authors hope the results would be cited by researchers.FindingsThe influential parameters on mixed-mode crack propagation were found in this paper.Originality/valueThe computer code using MATLAB was prepared to study the mixed-mode crack paths. Also using ANNs toolbox, the crack path estimation was investigated.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating accident-prone freeway sections: simulation and accident prediction model;Proceedings of the Institution of Civil Engineers - Transport;2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3