Dielectric properties of high-permittivity A2/3CuTa4O12 ceramics

Author:

Szwagierczak Dorota

Abstract

Purpose – This paper aims to present the comparative study on the composition, microstructure and dielectric behavior of a group of new nonferroelectric high-permittivity A2/3CuTa4O12 (A = Y, Nd, Sm, Gd, Dy or Bi) ceramics. Design/methodology/approach – The materials under investigation were synthesized by solid-state reaction method and sintered at 1,120-1,230°C. Dielectric properties were investigated in the temperature range from −55 to 740°C at frequencies 10 Hz to 2 MHz. Microstructure, elemental composition and phase composition of the ceramics were examined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) methods. DC conductivity was studied in the temperature range 20-740°C. Findings – XRD analysis revealed peaks corresponding to Cu2Ta4O12 along with small amounts of secondary phases based on tantalum oxides. Impedance spectroscopic data and the results of SEM and EDS studies imply the spontaneous formation of internal barrier layer capacitors in the investigated materials. Two steps can be distinguished in the dielectric permittivity versus frequency plots. The low-frequency step of 1,000-100,000 is assigned to grain boundary barrier layer effect, while the high-frequency one of 34-46 is related to intrinsic properties of grains. Originality/value – Search for new high-permittivity capacitor materials is important for the progress in miniaturization and integration scale of electronic passive components. The paper reports on processing, microstructure, microanalysis studies and dielectric properties of a group of novel nonferroelectric materials with the perovskite structure of CaCu3Ti4O12 and the general formula A2/3CuTa4O12, being spontaneously formed internal barrier layer capacitors.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3