Abstract
PurposeThe primary objective of the paper is to examine the asymmetric Cointegration and asymmetric causality between financial development and poverty alleviation on annual data in Indian context over the period from 1980 to 2019.Design/methodology/approachFirst nonlinearity test by Brooks et al. (1999) is applied to ascertain the nonlinear behavior of the variables used. Once the nonlinear behavior of variables is confirmed, asymmetric and nonlinear unit root tests by Kapetanios and Shin (2008) are applied to check for the order of integration of selected variables. Next, nonlinear autoregressive distributed lag model (NARDL) is employed to analyze the asymmetric Cointegration. Finally, Hatemi-j- asymmetric causality tests is applied to work out the direction of asymmetric causality.FindingsThe empirical findings document the existence of asymmetries in the short-run as well as long-run between poverty and financial development. The asymmetry reveals that negative financial development shocks leave a more profound impact on poverty alleviation than their positive equivalents. The findings of Wald's test also confirm the presence of asymmetric Cointegration. The asymmetric cumulative dynamic multipliers used to examine the behavior of asymmetries and adjustments with respect to time lend credence to the results calculated using NARDL estimator. This result exhibits the robustness of the model. Furthermore, the result emanating from recently introduced asymmetric causality test reveals a unidirectional asymmetric causality between negative shocks in financial development and poverty. The findings of the present study necessitate the need for investigating asymmetric and nonlinear effects in finance–poverty nexus, which existent literature has completely neglected, in order to have relevant policy conclusions.Research limitations/implicationsThe study used “Per capita consumption expenditure” as a measure for poverty due to lack of continuous time series data on headcount ratio. In future, researchers can extend this study by incorporating headcount ratio as a measure of poverty in their respective works. There is further scope of research on this issue by finding out the impact of formal and informal sources of credit on poverty separately. A panel data study for developing countries over a period of time could further confirm/negate the findings of the present study.Originality/valueTo the best of the authors’ knowledge none of the studies in Indian context has scrutinized asymmetric and nonlinear impact of financial development on poverty. To dredge up asymmetric structures at work, the authors have used the highly celebrated NARDL estimator. To enrich the existent body of knowledge along the lines of asymmetric (nonlinear) linkages, the authors have also used recently introduced asymmetric causality test by Hatemi-j-(2012) to find out the direction asymmetric causality.
Subject
General Economics, Econometrics and Finance
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献