Symmetric Kullback–Leibler distance based generalized grey target decision method for mixed attributes

Author:

Ma JinshanORCID,Zhu HongliangORCID

Abstract

PurposeThe reported Kullback–Leibler (K–L) distance-based generalized grey target decision method (GGTDM) for mixed attributes is an asymmetric decision-making basis (DMB) that does not have the symmetric characteristic of distance in common sense, which may affect the decision-making result. To overcome the deficiency of the asymmetric K–L distance, the symmetric K–L distance is investigated to act as the DMB of GGTDM for mixed attributes.Design/methodology/approachThe decision-making steps of the proposed approach are as follows: First, all mixed attribute values are transformed into binary connection numbers, and the target centre indices of all attributes are determined. Second, all the binary connection numbers (including the target centre indices) are divided into deterministic and uncertain terms and converted into two-tuple (determinacy and uncertainty) numbers. Third, the comprehensive weighted symmetric K–L distance can be computed, as can the alternative index of normalized two-tuple (deterministic degree and uncertainty degree) number and that of the target centre. Finally, the decision-making is made by the comprehensive weighted symmetric K–L distance according to the rule that the smaller the value, the better the alternative.FindingsThe case study verifies the proposed approach with its sufficient theoretical basis for decision-making and reflects the preferences of decision-makers to address the uncertainty of an uncertain number.Originality/valueThis work compares the single-direction-based K–L distance to the symmetric one and uses the symmetric K–L distance as the DMB of GGTDM. At the same time, different coefficients are assigned to an uncertain number’s deterministic term and uncertain term in the calculation process, as this reflects the preference of the decision-maker.

Publisher

Emerald

Reference40 articles.

1. Online monitoring scheme using principal component analysis through Kullback-Leibler divergence analysis technique for fault detection;Transactions of the Institute of Measurement and Control,2020

2. Multi-attribute decision analysis on three-parameter interval grey number based on bellshaped possibility;Journal of Grey System,2022

3. Hybrid multiple attribute recognition based on coefficient of incidence bull's-eye-distance;Acta Aeronautica Et Astronautica Sinica,2015

4. A review of grey target decision model;Journal of Grey System,2022

5. Grey system theory in sustainable development research—a literature review (2011−2021);Grey Systems: Theory and Application,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3