Utilization of a microstructure sensitive fatigue model for additively manufactured Ti-6Al-4V

Author:

Torries Brian,Sterling Amanda J.,Shamsaei Nima,Thompson Scott M.,Daniewicz Steve R.

Abstract

Purpose The purpose of this study is to calibrate a microstructure-based fatigue model for its use in predicting fatigue life of additively manufactured (AM) Ti-6Al-4V. Fatigue models that are capable of better predicting the fatigue behavior of AM metals is required to further the adoption of such metals by various industries. The trustworthiness of AM metallic material is not well characterized, and fatigue models that consider unique microstructure and porosity inherent to AM parts are needed. Design/methodology/approach Various Ti-6Al-4V samples were additively manufactured using Laser Engineered Net Shaping (LENS), a direct laser deposition method. The porosity within the LENS samples, as well as their subsequent heat treatment, was varied to determine the effects of microstructure and defects on fatigue life. The as-built and heat-treated LENS samples, together with wrought Ti-6Al-4V samples, underwent fatigue testing and microstructure and fractographic inspection. The collected microstructure/defect statistics were used for calibrating a microstructure-sensitive fatigue model. Findings Fatigue lives of the LENS Ti-6Al-4V samples were found to be consistently less than those of the wrought Ti-6Al-4V samples, and this is attributed to the presence of pores/defects within the LENS material. Results further indicate that LENS Ti-6Al-4V fatigue lives, as predicted by the used microstructure-sensitive fatigue model, are in close agreement with experimental results. The used model could predict upper and lower prediction bounds based on defect statistics. All the fatigue data were found to be within the bounds predicted by the microstructure-sensitive fatigue model. Research limitations/implications To further test the utility of microstructure-sensitive fatigue models for predicting fatigue life of AM samples, future studies on additional material types, additive manufacturing processes and heat treatments should be conducted. Originality/value This study shows the utility of a microstructure-sensitive fatigue model for use in predicting the fatigue life of LENS Ti-6Al-4V with various levels of porosity and while in a heat-treated condition.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1. ASTM E606/E606M-12, (2012), Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken, PA, available at: www.astm.org

2. ASTM F136-13, (2013), Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, available at: www.astm.org

3. Mechanical properties and microstructural features of direct laser deposited Ti-6Al-4V;JOM,2015

4. Mechanical properties of additive manufactured ti-6al-4v using wire and powder based processes,2011

5. Strain-based fatigue data for Ti–6Al–4V ELI under fully-reversed and mean strain loads;Data in Brief,2016

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3