Additive manufacturing and mechanical properties of lattice-curved structures

Author:

Cuan-Urquizo Enrique,Martínez-Magallanes Mario,Crespo-Sánchez Saúl E.,Gómez-Espinosa Alfonso,Olvera-Silva Oscar,Roman-Flores Armando

Abstract

Purpose The purpose of this paper is to study the feasibility of the fabrication of circle arc curved-layered structures via conventional fused deposition modeling (FDM) with three-axis machines and to identify the main structural parameters that have an influence on their mechanical properties. Design/methodology/approach Customized G-codes were generated via a script developed in MATLAB. The G-codes contain nozzle trajectories with displacements in the three axes simultaneously. Using these, the samples were fabricated with different porosities, and their influence on the mechanical responses evaluated via tensile testing. The load-displacement curves were analyzed to understand the structure-property relationship. Findings Circled arc curved-layered structures were successfully fabricated with conventional three-axis FDM machines. The response of these curved lattice structures under tensile loads was mapped to three main stages and deformation mechanisms, namely, straightening, stretching and fracture. The micro-structure formed by the transverse filaments affect the first stage significantly and the other two minimally. The main parameters that affect the structural response were found to be the transverse filaments, as these could behave as hinges, allowing the slide/rotation of adjacent layers and making the structure more shear sensitive. Research limitations/implications This paper was restricted to arc-curved samples fabricated with conventional three-axis FDM machines. Originality/value The FDM fabrication of curved-structures with controlled porosity and their relation to the resulting mechanical properties is presented here for the first time. The study of curved-lattice structures is of great relevance in various areas, such as biomedical, architecture and aerospace.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3