Exploring Information Systems (IS) curricula: a semantic analysis approach

Author:

Shi Hui,Hwang Drew,Chong Dazhi,Yan Gongjun

Abstract

Purpose Today’s in-demand skills may not be needed tomorrow. As companies are adopting a new group of technologies, they are in huge need of information technology (IT) professionals who can fill various IT positions with a mixture of technical and problem-solving skills. This study aims to adopt a sematic analysis approach to explore how the US Information Systems (IS) programs meet the challenges of emerging IT topics. Design/methodology/approach This study considers the application of a hybrid semantic analysis approach to the analysis of IS higher education programs in the USA. It proposes a semantic analysis framework and a semantic analysis algorithm to analyze and evaluate the context of the IS programs. To be more specific, the study uses digital transformation as a case study to examine the readiness of the IS programs in the USA to meet the challenges of digital transformation. First, this study developed a knowledge pool of 15 principles and 98 keywords from an extensive literature review on digital transformation. Second, this study collects 4,093 IS courses from 315 IS programs in the USA and 493,216 scientific publication records from the Web of Science Core Collection. Findings Using the knowledge pool and two collected data sets, the semantic analysis algorithm was implemented to compute a semantic similarity score (DxScore) between an IS course’s context and digital transformation. To present the credibility of the research results of this paper, the state ranking using the similarity scores and the state employment ranking were compared. The research results can be used by IS educators in the future in the process of updating the IS curricula. Regarding IT professionals in the industry, the results can provide insights into the training of their current/future employees. Originality/value This study explores the status of the IS programs in the USA by proposing a semantic analysis framework, using digital transformation as a case study to illustrate the application of the proposed semantic analysis framework, and developing a knowledge pool, a corpus and a course information collection.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3