Author:
Shi Hui,Hwang Drew,Chong Dazhi,Yan Gongjun
Abstract
Purpose
Today’s in-demand skills may not be needed tomorrow. As companies are adopting a new group of technologies, they are in huge need of information technology (IT) professionals who can fill various IT positions with a mixture of technical and problem-solving skills. This study aims to adopt a sematic analysis approach to explore how the US Information Systems (IS) programs meet the challenges of emerging IT topics.
Design/methodology/approach
This study considers the application of a hybrid semantic analysis approach to the analysis of IS higher education programs in the USA. It proposes a semantic analysis framework and a semantic analysis algorithm to analyze and evaluate the context of the IS programs. To be more specific, the study uses digital transformation as a case study to examine the readiness of the IS programs in the USA to meet the challenges of digital transformation. First, this study developed a knowledge pool of 15 principles and 98 keywords from an extensive literature review on digital transformation. Second, this study collects 4,093 IS courses from 315 IS programs in the USA and 493,216 scientific publication records from the Web of Science Core Collection.
Findings
Using the knowledge pool and two collected data sets, the semantic analysis algorithm was implemented to compute a semantic similarity score (DxScore) between an IS course’s context and digital transformation. To present the credibility of the research results of this paper, the state ranking using the similarity scores and the state employment ranking were compared. The research results can be used by IS educators in the future in the process of updating the IS curricula. Regarding IT professionals in the industry, the results can provide insights into the training of their current/future employees.
Originality/value
This study explores the status of the IS programs in the USA by proposing a semantic analysis framework, using digital transformation as a case study to illustrate the application of the proposed semantic analysis framework, and developing a knowledge pool, a corpus and a course information collection.
Subject
Library and Information Sciences,General Computer Science