A direct‐writing approach to the micro‐patterning of copper onto polyimide

Author:

Ng J.H.‐G.,Desmulliez M.P.Y.,Lamponi M.,Moffat B.G.,McCarthy A.,Suyal H.,Walker A.C.,Prior K.A.,Hand D.P.

Abstract

PurposeThe purpose of this paper is to present a novel manufacturing process that aims to pattern metal tracks onto polyimide at atmospheric pressure and ambient environment. The process can be scaled up for industrial applications.Design/methodology/approachFrom a thorough literature survey, different approaches were carried out for processing polyimide. Following a design of experiments for the processing and various characterisation techniques, a micro‐coil was manufactured as a test demonstrator.FindingsThe characteristics of some main formaldehyde‐based electroless copper baths were compared. The quality of the sidewalls was characterised and the performance of the process was assessed.Originality/valueThis paper demonstrates a high‐value manufacturing technique that is mass manufacturable, low cost and suitable for use on 3D surfaces. Criteria required for the development of a direct‐writing process have been described. The issues surrounding electroless plating on polyimide have been explained.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3