An approach based on deep learning for Indian sign language translation

Author:

Mistree Kinjal BhargavkumarORCID,Thakor Devendra,Bhatt Brijesh

Abstract

PurposeAccording to the Indian Sign Language Research and Training Centre (ISLRTC), India has approximately 300 certified human interpreters to help people with hearing loss. This paper aims to address the issue of Indian Sign Language (ISL) sentence recognition and translation into semantically equivalent English text in a signer-independent mode.Design/methodology/approachThis study presents an approach that translates ISL sentences into English text using the MobileNetV2 model and Neural Machine Translation (NMT). The authors have created an ISL corpus from the Brown corpus using ISL grammar rules to perform machine translation. The authors’ approach converts ISL videos of the newly created dataset into ISL gloss sequences using the MobileNetV2 model and the recognized ISL gloss sequence is then fed to a machine translation module that generates an English sentence for each ISL sentence.FindingsAs per the experimental results, pretrained MobileNetV2 model was proven the best-suited model for the recognition of ISL sentences and NMT provided better results than Statistical Machine Translation (SMT) to convert ISL text into English text. The automatic and human evaluation of the proposed approach yielded accuracies of 83.3 and 86.1%, respectively.Research limitations/implicationsIt can be seen that the neural machine translation systems produced translations with repetitions of other translated words, strange translations when the total number of words per sentence is increased and one or more unexpected terms that had no relation to the source text on occasion. The most common type of error is the mistranslation of places, numbers and dates. Although this has little effect on the overall structure of the translated sentence, it indicates that the embedding learned for these few words could be improved.Originality/valueSign language recognition and translation is a crucial step toward improving communication between the deaf and the rest of society. Because of the shortage of human interpreters, an alternative approach is desired to help people achieve smooth communication with the Deaf. To motivate research in this field, the authors generated an ISL corpus of 13,720 sentences and a video dataset of 47,880 ISL videos. As there is no public dataset available for ISl videos incorporating signs released by ISLRTC, the authors created a new video dataset and ISL corpus.

Publisher

Emerald

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3