The study of design and harmonic suppression for 800 kV EHV MSCR in engineering applications

Author:

Wang Qingpeng,Bai Baodong,An Zhen,Chen Dezhi

Abstract

Purpose The purpose of this paper is to solve the reactive power adjustment and the overvoltage suppression problems in the extra high voltage (EHV) long distance grid, which often appears transient overvoltage, light load loss and other issues. Design/methodology/approach One 800 kV EHV magnetically saturation controllable reactor (MSCR) used self-power supply control system is designed. The structure and the working mechanism of the novel MSCR are analyzed in detail. Then the control and capacity step adjustment characteristics are obtained by experiments. The harmonic characteristic is studied by theoretical analysis and low voltage test. Findings To solve the problem of harmonics in the working current of nets windings, the fifth and the seventh filers are equipped between the compensation windings and the control system. The effectiveness of the harmonic suppression method is proved by simulation and experiments. Originality/value It proves that the 800 kV EHV MSCR design in this paper can achieve the purpose of the reactive power continuous linear adjustment, and the capacity adjustment is sensitive. After filtering, the harmonics level of the working current meets the standard of the EHV grid.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference19 articles.

1. Economic efficiency of AC power transmission with controlled Shunt reactors;Soviet Electrical Engineering,1991

2. Principle and implementation of a harmonic depression approach for single-phase controlled saturable reactor;Proceedings of the CSEE,2002

3. Modelling of extra-high voltage magnetically controlled Shunt reactor;Proceedings of the CSEE,2008

4. Study of a Shunt reactor with transformer function;IEEE Transactions on Magnetics,1997

5. Comparison of controllable reactors and thyristor devices;Russian Electrical Engineering,1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3