Exploiting big data for customer and retailer benefits

Author:

Aloysius John A,Hoehle Hartmut,Venkatesh Viswanath

Abstract

Purpose – Mobile checkout in the retail store has the promise to be a rich source of big data. It is also a means to increase the rate at which big data flows into an organization as well as the potential to integrate product recommendations and promotions in real time. However, despite efforts by retailers to implement this retail innovation, adoption by customers has been slow. The paper aims to discuss these issues. Design/methodology/approach – Based on interviews and focus groups with leading retailers, technology providers, and service providers, the authors identified several emerging in-store mobile scenarios; and based on customer focus groups, the authors identified potential drivers and inhibitors of use. Findings – A first departure from the traditional customer checkout process flow is that a mobile checkout involves two processes: scanning and payment, and that checkout scenarios with respect to each of these processes varied across two dimensions: first, location – whether they were fixed by location or mobile; and second, autonomy – whether they were assisted by store employees or unassisted. The authors found no evidence that individuals found mobile scanning to be either enjoyable or to have utilitarian benefit. The authors also did not find greater privacy concerns with mobile payments scenarios. The authors did, however, in the post hoc analysis find that mobile unassisted scanning was preferred to mobile assisted scanning. The authors also found that mobile unassisted scanning with fixed unassisted checkout was a preferred service mode, while there was evidence that mobile assisted scanning with mobile assisted payment was the least preferred checkout mode. Finally, the authors found that individual differences including computer self-efficacy, personal innovativeness, and technology anxiety were strong predictors of adoption of mobile scanning and payment scenarios. Originality/value – The work helps the authors understand the emerging mobile checkout scenarios in the retail environment and customer reactions to these scenarios.

Publisher

Emerald

Subject

Management of Technology and Innovation,Strategy and Management,General Decision Sciences

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3