Shape perception of soft hand based on dual-signal comparison contact detection

Author:

Shi Kai,Li Jun,Bao Gang

Abstract

Purpose The structural adaptive ability of the soft robot is fully demonstrated in the grasping task of the soft hand. A soft hand can easily realize the envelope operation of the object without planning. With the continuous development of robot applications, researchers are no longer satisfied with the ability of the soft hand to grasp. The purpose of this paper is to perceive the object’s shape while grasping to provide a decision-making basis for more intelligent robot applications. Design/methodology/approach This paper proposes a dual-signal comparison method to obtain the fingertip position. The dual signal includes the displacement calculated by the static model without considering the external load change and the displacement calculated by the bending sensor. The dual-signal comparison method can use the obvious change trend difference between the above two signals in the hover and contact states to identify the touch position. The authors make the soft hand scan around the object through touch operation to detect the object’s shape, and the tracks of every touch fingertip position can envelop the object’s shape. Findings The experimental results show that the dual-signal comparison method can accurately identify the contact moment of soft fingers. This detection method makes the soft hand develop the shape detection ability. The soft hand in the experiment can perceive squares, circles and a few other complex shapes. Originality/value The dual-signal comparison method proposed in this paper can detect a touch action by using the signal change trend when the working condition suddenly changes with the rough robotic model and sensing, thus improving the utilization value of the measured signal. The problems of large model errors and inaccurate sensors also negatively impact the use of other soft robots. It is generally difficult to achieve good results by directly using these models and sensors with the thinking of rigid robot analysis. The dual-signal comparison method in this paper can provide some reference for this aspect.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3