Laser 3D tightly coupled mapping method based on visual information

Author:

Liu Sixing,Chai Yan,Yuan Rui,Miao Hong

Abstract

Purpose Simultaneous localization and map building (SLAM), as a state estimation problem, is a prerequisite for solving the problem of autonomous vehicle motion in unknown environments. Existing algorithms are based on laser or visual odometry; however, the lidar sensing range is small, the amount of data features is small, the camera is vulnerable to external conditions and the localization and map building cannot be performed stably and accurately using a single sensor. This paper aims to propose a laser three dimensions tightly coupled map building method that incorporates visual information, and uses laser point cloud information and image information to complement each other to improve the overall performance of the algorithm. Design/methodology/approach The visual feature points are first matched at the front end of the method, and the mismatched point pairs are removed using the bidirectional random sample consensus (RANSAC) algorithm. The laser point cloud is then used to obtain its depth information, while the two types of feature points are fed into the pose estimation module for a tightly coupled local bundle adjustment solution using a heuristic simulated annealing algorithm. Finally, the visual bag-of-words model is fused in the laser point cloud information to establish a threshold to construct a loopback framework to further reduce the cumulative drift error of the system over time. Findings Experiments on publicly available data sets show that the proposed method in this paper can match its real trajectory well. For various scenes, the map can be constructed by using the complementary laser and vision sensors, with high accuracy and robustness. At the same time, the method is verified in a real environment using an autonomous walking acquisition platform, and the system loaded with the method can run well for a long time and take into account the environmental adaptability of multiple scenes. Originality/value A multi-sensor data tight coupling method is proposed to fuse laser and vision information for optimal solution of the positional attitude. A bidirectional RANSAC algorithm is used for the removal of visual mismatched point pairs. Further, oriented fast and rotated brief feature points are used to build a bag-of-words model and construct a real-time loopback framework to reduce error accumulation. According to the experimental validation results, the accuracy and robustness of the single-sensor SLAM algorithm can be improved.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference21 articles.

1. Consistent map building in petrochemical complexes for firefighter robots using slam based on GPS and Lidar;Robomech Journal,2018

2. Simultaneous localization and mapping (SLAM): part II;IEEE Robotics & Automation Magazine,2006

3. Adaptive iterative learning control of uncertain robotic systems;IEE Proceedings-Control Theory and Applications,2000

4. Mono SLAM: real-time single camera SLAM;IEEE Transactions on Pattern Analysis and Machine Intelligence,2007

5. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography;Communications of the ACM,1981

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3