The implementation and performance evaluation for a smart robot with edge computing algorithms

Author:

Chen Joy Iong-Zong,Huang Ping-Feng,Pi Chung Sheng

Abstract

Purpose Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed designed in ECR. Eventually, based on the results from two experiments held in little constrained condition, such as the maximum data size is 2GB, the performance of the proposed techniques demonstrate the effectiveness, scalability and performance efficiency of the proposed IoT model. Design/methodology/approach Certainly, the proposed SECR is trying primarily to take over other traditional static robots in a centralized or distributed cloud environment. One aspect of representation of the proposed edge computing algorithms is due to challenge to slow down the consumption of time which happened in an artificial intelligence (AI) robot system. Thus, the developed SECR trained by tiny machine learning (TinyML) techniques to develop a decentralized and dynamic software environment. Findings Specifically, the waste time of SECR has actually slowed down when it is embedded with Edge Computing devices in the demonstration of data transmission within different paths. The TinyML is applied to train with image data sets for generating a framework running in the SECR for the recognition which has also proved with a second complete experiment. Originality/value The work presented in this paper is the first research effort, and which is focusing on resource allocation and dynamic path selection for edge computing. The developed platform using a decoupled resource management model that manages the allocation of micro node resources independent of the service provisioning performed at the cloud and manager nodes. Besides, the algorithm of the edge computing management is established with different path and pass large data to cloud and receive it. In this work which considered the SECR framework is able to perform the same function as that supports to the multi-dimensional scaling (MDS).

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference37 articles.

1. Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT,2015

2. Arduino Nano 33 BLE Sense (2021), available at: https://store.arduino.cc/arduino-nano-33-ble-sense (accessed 31 January).

3. Low latency peer to peer robot wireless communication with edge computing,2021

4. Intelligent search and find system for robotic platform based on smart edge computing service;Special Section on Edge Computing and Networking for Ubiquitous, IEEE Access,2020

5. Benchmann, K. (2016), “Design and implementation of a fog computing frame work”, Diploma Thesis, Technische Universität Wien, reposiTUm, doi: 10.34726/hss.2016.40086.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TinyML Algorithms for Big Data Management in Large-Scale IoT Systems;Future Internet;2024-01-25

2. Comparison of Cloud Computing and TinyML Methods for Brain-Computer Interface in Motor Imagery Problems;2023 8th International Conference on Business and Industrial Research (ICBIR);2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3