Session identification techniques used in web usage mining

Author:

Fatima Bahjat,Ramzan Huma,Asghar Sohail

Abstract

Purpose The purpose of this paper is to critically analyze the state-of-the-art session identification techniques used in web usage mining (WUM) process in terms of their limitations, features, and methodologies. Design/methodology/approach In this research, systematic literature review has been conducted using review protocol approach. The methodology consisted of a comprehensive search for relevant literature over the period of 2005-2015, using four online database repositories (i.e. IEEE, Springer, ACM Digital Library, and ScienceDirect). Findings The findings revealed that this research area is still immature and existing literature lacks the critical review of recent session identification techniques used in WUM process. Originality/value The contribution of this study is to provide a structured overview of the research developments, to critically review the existing session identification techniques, highlight their limitations and associated challenges and identify areas where further improvements are required so as to complement the performance of existing techniques.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference46 articles.

1. Particle swarm optimization based clustering of web usage data,2008

2. Optimal algorithms for generation of user session sequences using server side web user logs,2009

3. Identify navigational patterns of web users;International Journal of Computer-Aided Technologies (IJCAx),2014

4. Bayir, M. and Toroslu, I. (2013), “Link based session reconstruction: finding all maximal paths”, available at: http://arxiv.org/abs/1307.1927 (accessed April 26, 2015).

5. Bayir, M.A., Toroslu, I.H., Cosar, A. and Fidan, G. (2009), “Smart miner: a new framework for mining large scale web usage data”, Proceedings of the 18th International Conference on World Wide Web, pp. 161-170, available at: http://dl.acm.org/citation.cfm?id=1526732

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Session-Based Time-Window Identification in Virtual Learning Environments;Journal of Learning Analytics;2023-12-15

2. An innovative data collection method to eliminate the preprocessing phase in web usage mining;Engineering Science and Technology, an International Journal;2023-04

3. Visual Analytics for Session-based Time-Windows Identification in Virtual Learning Environments;2022 26th International Conference Information Visualisation (IV);2022-07

4. Theoretical B2B knowledge management framework focused on value co-creation;VINE Journal of Information and Knowledge Management Systems;2022-02-14

5. Data Mining Technology in Detection and Identification of Bad Data in Power System;Communications in Computer and Information Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3