Abstract
PurposeGender bias in artificial intelligence (AI) should be solved as a priority before AI algorithms become ubiquitous, perpetuating and accentuating the bias. While the problem has been identified as an established research and policy agenda, a cohesive review of existing research specifically addressing gender bias from a socio-technical viewpoint is lacking. Thus, the purpose of this study is to determine the social causes and consequences of, and proposed solutions to, gender bias in AI algorithms.Design/methodology/approachA comprehensive systematic review followed established protocols to ensure accurate and verifiable identification of suitable articles. The process revealed 177 articles in the socio-technical framework, with 64 articles selected for in-depth analysis.FindingsMost previous research has focused on technical rather than social causes, consequences and solutions to AI bias. From a social perspective, gender bias in AI algorithms can be attributed equally to algorithmic design and training datasets. Social consequences are wide-ranging, with amplification of existing bias the most common at 28%. Social solutions were concentrated on algorithmic design, specifically improving diversity in AI development teams (30%), increasing awareness (23%), human-in-the-loop (23%) and integrating ethics into the design process (21%).Originality/valueThis systematic review is the first of its kind to focus on gender bias in AI algorithms from a social perspective within a socio-technical framework. Identification of key causes and consequences of bias and the breakdown of potential solutions provides direction for future research and policy within the growing field of AI ethics.Peer reviewThe peer review history for this article is available at https://publons.com/publon/10.1108/OIR-08-2021-0452
Subject
Library and Information Sciences,Computer Science Applications,Information Systems
Reference71 articles.
1. Shades of grey: guidelines for working with the grey literature in systematic reviews for management and organizational studies;International Journal of Management Reviews,2017
2. AI for all: defining the what, why, and how of inclusive AI,2020
3. Towards a gendered innovation in AI,2020
4. Baleis, J., Keller, B., Starke, C. and Marcinkowski, F. (2019), “Cognitive and emotional response to fairness in AI - a systematic review”, available at: https://www.sozwiss.hhu.de/fileadmin/redaktion/Fakultaeten/Philosophische_Fakultaet/Sozialwissenschaften/Kommunikations-_und_Medienwissenschaft_I/Dateien/Baleis_et_al.__2019__Literatur_Review.pdf (accessed 20 January 2021).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献