Fuzzy logic approach for investigation of microstructure and mechanical properties of Sn96.5-Ag3.0-Cu0.5 lead free solder alloy

Author:

Aamir Muhammad,Izhar Izhar,Waqas Muhammad,Iqbal Muhammad,Hanif Muhammad Imran,Muhammad Riaz

Abstract

Purpose This paper aims to develop a fuzzy logic-based algorithm to predict the intermetallic compound (IMC) size and mechanical properties of soldering material, Sn96.5-Ag3.0-Cu0.5 (SAC305) alloy, at different levels of temperature. The reliability of solder joint in materials selection is critical in terms of temperature, mechanical properties and environmental aspects. Owing to a wide range of soldering materials available, the selection space finds a fuzzy characteristic. Design/methodology/approach The developed algorithm takes thermal aging temperature for SAC305 alloy as input and converts it into fuzzy domain. These fuzzified values are then subjected to a fuzzy rule base, where a set of rules determines the IMC size and mechanical properties, such as yield strength (YS) and ultimate tensile strength (UTS) of SAC305 alloy. The algorithm is successfully simulated for various input thermal aging temperatures. To analyze and validate the developed algorithm, an SAC305 lead (Pb)-free solder alloy is developed and thermally aged at 40, 60 and 100°C temperature. Findings The experimental results indicate an average IMCs size of 5.967 (in Pixels), 19.850 N/mm2 YS and 22.740 N/mm2 UTS for SAC305 alloy when thermally aged at an elevated temperature of 140°C. In comparison, the simulation results predicted 5.895 (in Pixels) average IMCs size, 19.875 N/mm2 YS and 22.480 N/mm2 UTS for SAC305 alloy at 140°C thermally aged temperature. Originality/value From the experimental and simulated results, it is evident that the fuzzy-based developed algorithm can be used effectively to predict the IMCs size and mechanical properties of SAC305 at various aging temperatures, for the first time.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference24 articles.

1. Relationships between microstructure and mechanical properties in high Sn content Pb-based and Pb-free solder alloy after thermal aging;International Journal of Advanced Materials and Manufacturing,2016

2. Thermal aging effect on the intermetallic particles and mechanical properties of 96Sn-04Pb solder alloy;Journal of Advanced Material Sciences,2015

3. Materials selection in conceptual design;Materials Science and Technology,1989

4. The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures;Journal of Alloys and Compounds,2010

5. A review of solder evolution in electronic application;International Journal of Engineering,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3