Derivative extraction from a neuro‐fuzzy model

Author:

Rashid K.,Ramírez J.A.,Freeman E.M.

Abstract

Many engineering optimisation problems are difficult to describe mathematically and as such can not be easily optimised. Recently attention has focussed on developing methods to create approximations of the real object function using numerical model data instead. The approximated function can then be optimised using a suitable optimisation method. This paper describes the extraction of derivative information from a neuro‐fuzzy system. Subsequently, this permits the application of classic deterministic optimisation methods in order to identify the global minimum of any approximated objective function. For non‐differentiable functions this approach is of great benefit. Results from an analytical optimisation example, in which the objective function and the solution are known, and a two variable loudspeaker optimisation problem are discussed. In both cases, the neuro‐fuzzy system worked well to model the physical problem and the extracted derivative served to locate the minimum.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of Bioreactor Using Metabolic Control Analysis Approach;Biotechnology Progress;2007-04-09

2. Extracting Sensitivity Information of Electromagnetic Device Models Using a Modified ANFIS Topology;IEEE Transactions on Magnetics;2004-03

3. Modelling and simulation with neural and fuzzy‐neural networks of switched circuits;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2003-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3