Real‐time reconstruction of endocardial potential maps in non‐contact cardiac mapping

Author:

Badics Zsolt,Harlev Doron

Abstract

PurposeThe purpose of this paper is to describe a numerical inversion technology developed to reconstruct endocardial electric potential maps on the internal surface of heart chambers utilizing intracavitary multi‐electrode catheter measurements. The objective is to perform the reconstruction real time with high accuracy, thereby allowing the incorporation of the technology into medical imaging systems.Design/methodology/approachElectrode potential points from several beats are merged in order to maximize the information extracted from the catheter measurements. To solve the ill‐posed inverse problem fast, numerically stable solution algorithms based on generalized Tikhonov regularization and bidiagonalization are developed. The latter algorithm also provides an efficient framework for choosing the regularization parameter optimally.FindingsResults of three examples are presented to thoroughly illustrate the performance of the algorithm: one with synthetic data generated in a computational electromagnetics (virtual lab) environment, thereby allowing exact error analysis; another with measured data from a phantom‐bench human heart model where the effect of measurement errors can be investigated in a controlled environment; and a third example that illustrates how the algorithm performs when the catheter data are collected in vivo in a swine heart.Practical implicationsThe speed and accuracy in the three examples successfully prove that the inversion technology can be a key component of medical imaging systems.Originality/valueWhile some elements of these computational models and techniques presented have been used for decades, the authors achieve speed and accuracy that have not been reported before by combining multi‐beat catheter measurements, the generalized Tikhonov regularization technique, a bidiagonalization algorithm and other top‐notch linear algebra techniques.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3