Petri net‐based modeling and performance analysis of transaction scheduling in grid database

Author:

Han Yaojun,Jiang Changjun,Luo Xuemei

Abstract

PurposeThe purpose of this paper is to present a scheduling model, scheduling algorithms, and formal model and analysis techniques for concurrency transaction in grid database environment.Design/methodology/approachClassical transaction models and scheduling algorithms developed for homogeneous distributed architecture will not work in the grid architecture and should be revisited for this new and evolving architecture. The conventional model is improved by three‐level transaction scheduling model and the scheduling algorithms for concurrency transaction is improved by considering transmission time of a transaction, user's priority, and the number of database sites accessed by the transaction as a priority of the transaction. Aiming at the problems of analysis and modeling of the transaction scheduling in grid database, colored dynamic time Petri nets (CDTPN) model are proposed. Then the reachability of the transaction scheduling model is analyzed.FindingsThe three‐level transaction scheduling model not only supports the autonomy of grid but also lightens the pressure of communication. Compared with classical transaction scheduling algorithms, the algorithms not only support the correctness of the data but also improve the effectiveness of the system. The CDTPN model is convenient for modeling and analyzing dynamic performance of grid transaction. Some important results such as abort‐ratio and turnover‐time are gotten by analyzing reachability of CDTPN.Originality/valueThe three‐level transaction scheduling model and improved scheduling algorithms with more complex priority are presented in the paper. The paper gives a CDTPN model for modeling transaction scheduling in grid database. In CDTPN model, the time interval of a transition is a function of tokens in input places of the transition.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Effective Algorithm and Modeling for Information Resources Scheduling in Cloud Computing;2013 International Conference on Advanced Cloud and Big Data;2013-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3